py2lispIDyOM.extract.MelodyInfo
- class py2lispIDyOM.extract.MelodyInfo(exp_pitch_element_list, parent_experiment, *args, **kw)[source]
A melody object (pd.DataFrame) that contains all data in a single melody inherit from the parent Experiment.
Public Data Attributes:
Inherited from
DataFrameaxesReturn a list representing the axes of the DataFrame.
shapeReturn a tuple representing the dimensionality of the DataFrame.
styleReturns a Styler object.
T- rtype:
DataFrame
indexThe index (row labels) of the DataFrame.
columnsThe column labels of the DataFrame.
valuesReturn a Numpy representation of the DataFrame.
Inherited from
NDFrameattrsDictionary of global attributes of this dataset.
flagsGet the properties associated with this pandas object.
shapeReturn a tuple of axis dimensions
axesReturn index label(s) of the internal NDFrame
ndimReturn an int representing the number of axes / array dimensions.
sizeReturn an int representing the number of elements in this object.
emptyIndicator whether Series/DataFrame is empty.
valuesdtypesReturn the dtypes in the DataFrame.
Inherited from
IndexingMixinilocPurely integer-location based indexing for selection by position.
locAccess a group of rows and columns by label(s) or a boolean array.
atAccess a single value for a row/column label pair.
iatAccess a single value for a row/column pair by integer position.
Public Methods:
__init__(exp_pitch_element_list, ...)access_idyom_output_keywords(output_keywords)Access certain idyom output(s) via its (their) keyword(s).
get_idyom_output_nparray(idyom_output_key)Get the IDyOM output via its key as a np.array
Get a list of available IDyOM output keyword for this melody.
compute_properties_means(idyom_outputs)Compute the mean values of the idyom outputs.
Inherited from
DataFrame__init__([data, index, columns, dtype, copy])__dataframe__([nan_as_null, allow_copy])Return the dataframe interchange object implementing the interchange protocol.
__repr__()Return a string representation for a particular DataFrame.
to_string()Render a DataFrame to a console-friendly tabular output.
items()Iterate over (column name, Series) pairs.
iteritems()Iterate over (column name, Series) pairs.
iterrows()Iterate over DataFrame rows as (index, Series) pairs.
itertuples([index, name])Iterate over DataFrame rows as namedtuples.
__len__()Returns length of info axis, but here we use the index.
dot()Compute the matrix multiplication between the DataFrame and other.
__matmul__()Matrix multiplication using binary @ operator in Python>=3.5.
__rmatmul__(other)Matrix multiplication using binary @ operator in Python>=3.5.
from_dict(data[, orient, dtype, columns])Construct DataFrame from dict of array-like or dicts.
to_numpy([dtype, copy, na_value])Convert the DataFrame to a NumPy array.
to_dict()Convert the DataFrame to a dictionary.
to_gbq(destination_table[, project_id, ...])Write a DataFrame to a Google BigQuery table.
from_records(data[, index, exclude, ...])Convert structured or record ndarray to DataFrame.
to_records([index, column_dtypes, index_dtypes])Convert DataFrame to a NumPy record array.
to_stata(path[, convert_dates, write_index, ...])Export DataFrame object to Stata dta format.
to_feather(path, **kwargs)Write a DataFrame to the binary Feather format.
to_markdown([buf, mode, index, storage_options])Print DataFrame in Markdown-friendly format.
to_parquet()Write a DataFrame to the binary parquet format.
to_orc([path, engine, index, engine_kwargs])Write a DataFrame to the ORC format.
to_html()Render a DataFrame as an HTML table.
to_xml([path_or_buffer, index, root_name, ...])Render a DataFrame to an XML document.
info([verbose, buf, max_cols, memory_usage, ...])Print a concise summary of a DataFrame.
memory_usage([index, deep])Return the memory usage of each column in bytes.
transpose(*args[, copy])Transpose index and columns.
__getitem__(key)isetitem(loc, value)Set the given value in the column with position 'loc'.
__setitem__(key, value)query()Query the columns of a DataFrame with a boolean expression.
eval()Evaluate a string describing operations on DataFrame columns.
select_dtypes([include, exclude])Return a subset of the DataFrame's columns based on the column dtypes.
insert(loc, column, value[, allow_duplicates])Insert column into DataFrame at specified location.
assign(**kwargs)Assign new columns to a DataFrame.
lookup(row_labels, col_labels)Label-based "fancy indexing" function for DataFrame.
align(other[, join, axis, level, copy, ...])Align two objects on their axes with the specified join method.
set_axis()Assign desired index to given axis.
reindex([labels, index, columns, axis, ...])Conform Series/DataFrame to new index with optional filling logic.
drop()Drop specified labels from rows or columns.
rename()Alter axes labels.
fillna()Fill NA/NaN values using the specified method.
pop(item)Return item and drop from frame.
replace()Replace values given in to_replace with value.
shift([periods, freq, axis, fill_value])Shift index by desired number of periods with an optional time freq.
set_index()Set the DataFrame index using existing columns.
reset_index()Reset the index, or a level of it.
isna()Detect missing values.
isnull()DataFrame.isnull is an alias for DataFrame.isna.
notna()Detect existing (non-missing) values.
notnull()DataFrame.notnull is an alias for DataFrame.notna.
dropna()Remove missing values.
drop_duplicates([subset, keep, inplace, ...])Return DataFrame with duplicate rows removed.
duplicated([subset, keep])Return boolean Series denoting duplicate rows.
sort_values()Sort by the values along either axis.
sort_index()Sort object by labels (along an axis).
value_counts([subset, normalize, sort, ...])Return a Series containing counts of unique rows in the DataFrame.
nlargest(n, columns[, keep])Return the first n rows ordered by columns in descending order.
nsmallest(n, columns[, keep])Return the first n rows ordered by columns in ascending order.
swaplevel([i, j, axis])Swap levels i and j in a
MultiIndex.reorder_levels(order[, axis])Rearrange index levels using input order.
__divmod__(other)- rtype:
tuple[DataFrame,DataFrame]
__rdivmod__(other)- rtype:
tuple[DataFrame,DataFrame]
compare(other[, align_axis, keep_shape, ...])Compare to another DataFrame and show the differences.
combine(other, func[, fill_value, overwrite])Perform column-wise combine with another DataFrame.
combine_first(other)Update null elements with value in the same location in other.
update(other[, join, overwrite, ...])Modify in place using non-NA values from another DataFrame.
groupby([by, axis, level, as_index, sort, ...])Group DataFrame using a mapper or by a Series of columns.
pivot([index, columns, values])Return reshaped DataFrame organized by given index / column values.
pivot_table([values, index, columns, ...])Create a spreadsheet-style pivot table as a DataFrame.
stack([level, dropna])Stack the prescribed level(s) from columns to index.
explode(column[, ignore_index])Transform each element of a list-like to a row, replicating index values.
unstack([level, fill_value])Pivot a level of the (necessarily hierarchical) index labels.
melt([id_vars, value_vars, var_name, ...])Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.
diff([periods, axis])First discrete difference of element.
aggregate([func, axis])Aggregate using one or more operations over the specified axis.
agg([func, axis])Aggregate using one or more operations over the specified axis.
any(*[, axis, bool_only, skipna, level])Return whether any element is True, potentially over an axis.
transform(func[, axis])Call
funcon self producing a DataFrame with the same axis shape as self.apply(func[, axis, raw, result_type, args])Apply a function along an axis of the DataFrame.
applymap(func[, na_action])Apply a function to a Dataframe elementwise.
append(other[, ignore_index, ...])Append rows of other to the end of caller, returning a new object.
join(other[, on, how, lsuffix, rsuffix, ...])Join columns of another DataFrame.
merge(right[, how, on, left_on, right_on, ...])Merge DataFrame or named Series objects with a database-style join.
round([decimals])Round a DataFrame to a variable number of decimal places.
corr([method, min_periods, numeric_only])Compute pairwise correlation of columns, excluding NA/null values.
cov([min_periods, ddof, numeric_only])Compute pairwise covariance of columns, excluding NA/null values.
corrwith(other[, axis, drop, method, ...])Compute pairwise correlation.
count([axis, level, numeric_only])Count non-NA cells for each column or row.
nunique([axis, dropna])Count number of distinct elements in specified axis.
idxmin([axis, skipna, numeric_only])Return index of first occurrence of minimum over requested axis.
idxmax([axis, skipna, numeric_only])Return index of first occurrence of maximum over requested axis.
mode([axis, numeric_only, dropna])Get the mode(s) of each element along the selected axis.
quantile()Return values at the given quantile over requested axis.
asfreq(freq[, method, how, normalize, ...])Convert time series to specified frequency.
resample(rule[, axis, closed, label, ...])Resample time-series data.
to_timestamp([freq, how, axis, copy])Cast to DatetimeIndex of timestamps, at beginning of period.
to_period([freq, axis, copy])Convert DataFrame from DatetimeIndex to PeriodIndex.
isin(values)Whether each element in the DataFrame is contained in values.
plotalias of
PlotAccessorhist([column, by, grid, xlabelsize, xrot, ...])Make a histogram of the DataFrame's columns.
boxplot([column, by, ax, fontsize, rot, ...])Make a box plot from DataFrame columns.
sparsealias of
SparseFrameAccessorffill()Synonym for
DataFrame.fillna()withmethod='ffill'.bfill()Synonym for
DataFrame.fillna()withmethod='bfill'.clip([lower, upper, axis, inplace])Trim values at input threshold(s).
interpolate([method, axis, limit, inplace, ...])Fill NaN values using an interpolation method.
where()Replace values where the condition is False.
mask()Replace values where the condition is True.
all([axis, bool_only, skipna, level])Return whether all elements are True, potentially over an axis.
mad([axis, skipna, level])Return the mean absolute deviation of the values over the requested axis.
sem([axis, skipna, level, ddof, numeric_only])Return unbiased standard error of the mean over requested axis.
var([axis, skipna, level, ddof, numeric_only])Return unbiased variance over requested axis.
std([axis, skipna, level, ddof, numeric_only])Return sample standard deviation over requested axis.
cummin([axis, skipna])Return cumulative minimum over a DataFrame or Series axis.
cummax([axis, skipna])Return cumulative maximum over a DataFrame or Series axis.
cumsum([axis, skipna])Return cumulative sum over a DataFrame or Series axis.
cumprod([axis, skipna])Return cumulative product over a DataFrame or Series axis.
sum([axis, skipna, level, numeric_only, ...])Return the sum of the values over the requested axis.
prod([axis, skipna, level, numeric_only, ...])Return the product of the values over the requested axis.
product([axis, skipna, level, numeric_only, ...])Return the product of the values over the requested axis.
mean([axis, skipna, level, numeric_only])Return the mean of the values over the requested axis.
skew([axis, skipna, level, numeric_only])Return unbiased skew over requested axis.
kurt([axis, skipna, level, numeric_only])Return unbiased kurtosis over requested axis.
kurtosis([axis, skipna, level, numeric_only])Return unbiased kurtosis over requested axis.
median([axis, skipna, level, numeric_only])Return the median of the values over the requested axis.
max([axis, skipna, level, numeric_only])Return the maximum of the values over the requested axis.
min([axis, skipna, level, numeric_only])Return the minimum of the values over the requested axis.
add(other[, axis, level, fill_value])Get Addition of dataframe and other, element-wise (binary operator add).
radd(other[, axis, level, fill_value])Get Addition of dataframe and other, element-wise (binary operator radd).
sub(other[, axis, level, fill_value])Get Subtraction of dataframe and other, element-wise (binary operator sub).
mul(other[, axis, level, fill_value])Get Multiplication of dataframe and other, element-wise (binary operator mul).
truediv(other[, axis, level, fill_value])Get Floating division of dataframe and other, element-wise (binary operator truediv).
floordiv(other[, axis, level, fill_value])Get Integer division of dataframe and other, element-wise (binary operator floordiv).
mod(other[, axis, level, fill_value])Get Modulo of dataframe and other, element-wise (binary operator mod).
pow(other[, axis, level, fill_value])Get Exponential power of dataframe and other, element-wise (binary operator pow).
rmul(other[, axis, level, fill_value])Get Multiplication of dataframe and other, element-wise (binary operator rmul).
rsub(other[, axis, level, fill_value])Get Subtraction of dataframe and other, element-wise (binary operator rsub).
rtruediv(other[, axis, level, fill_value])Get Floating division of dataframe and other, element-wise (binary operator rtruediv).
rfloordiv(other[, axis, level, fill_value])Get Integer division of dataframe and other, element-wise (binary operator rfloordiv).
rpow(other[, axis, level, fill_value])Get Exponential power of dataframe and other, element-wise (binary operator rpow).
rmod(other[, axis, level, fill_value])Get Modulo of dataframe and other, element-wise (binary operator rmod).
div(other[, axis, level, fill_value])Get Floating division of dataframe and other, element-wise (binary operator truediv).
rdiv(other[, axis, level, fill_value])Get Floating division of dataframe and other, element-wise (binary operator rtruediv).
eq(other[, axis, level])Get Equal to of dataframe and other, element-wise (binary operator eq).
ne(other[, axis, level])Get Not equal to of dataframe and other, element-wise (binary operator ne).
lt(other[, axis, level])Get Less than of dataframe and other, element-wise (binary operator lt).
gt(other[, axis, level])Get Greater than of dataframe and other, element-wise (binary operator gt).
le(other[, axis, level])Get Less than or equal to of dataframe and other, element-wise (binary operator le).
ge(other[, axis, level])Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).
multiply(other[, axis, level, fill_value])Get Multiplication of dataframe and other, element-wise (binary operator mul).
subtract(other[, axis, level, fill_value])Get Subtraction of dataframe and other, element-wise (binary operator sub).
divide(other[, axis, level, fill_value])Get Floating division of dataframe and other, element-wise (binary operator truediv).
Inherited from
NDFrame__init__(data[, copy, attrs])set_flags(*[, copy, allows_duplicate_labels])Return a new object with updated flags.
set_axis()Assign desired index to given axis.
swapaxes(axis1, axis2[, copy])Interchange axes and swap values axes appropriately.
droplevel(level[, axis])Return Series/DataFrame with requested index / column level(s) removed.
pop(item)- rtype:
Union[Series,Any]
squeeze([axis])Squeeze 1 dimensional axis objects into scalars.
rename_axis()Set the name of the axis for the index or columns.
equals(other)Test whether two objects contain the same elements.
__neg__()- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__pos__()- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__invert__()- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__nonzero__()- rtype:
NoReturn
__bool__()- rtype:
NoReturn
bool()Return the bool of a single element Series or DataFrame.
abs()Return a Series/DataFrame with absolute numeric value of each element.
__abs__()- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__round__([decimals])- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__iter__()Iterate over info axis.
keys()Get the 'info axis' (see Indexing for more).
items()Iterate over (label, values) on info axis
__len__()Returns length of info axis
__contains__(key)True if the key is in the info axis
__array__([dtype])__array_wrap__(result[, context])Gets called after a ufunc and other functions.
__array_ufunc__(ufunc, method, *inputs, **kwargs)__getstate__()- rtype:
dict[str,Any]
__setstate__(state)- rtype:
None
__repr__()Return a string representation for a particular object.
to_excel(excel_writer[, sheet_name, na_rep, ...])Write object to an Excel sheet.
to_json([path_or_buf, orient, date_format, ...])Convert the object to a JSON string.
to_hdf(path_or_buf, key[, mode, complevel, ...])Write the contained data to an HDF5 file using HDFStore.
to_sql(name, con[, schema, if_exists, ...])Write records stored in a DataFrame to a SQL database.
to_pickle(path[, compression, protocol, ...])Pickle (serialize) object to file.
to_clipboard([excel, sep])Copy object to the system clipboard.
to_xarray()Return an xarray object from the pandas object.
to_latex()Render object to a LaTeX tabular, longtable, or nested table.
to_csv()Write object to a comma-separated values (csv) file.
take(indices[, axis, is_copy])Return the elements in the given positional indices along an axis.
xs(key[, axis, level, drop_level])Return cross-section from the Series/DataFrame.
__getitem__(item)__delitem__(key)Delete item
get(key[, default])Get item from object for given key (ex: DataFrame column).
reindex_like(other[, method, copy, limit, ...])Return an object with matching indices as other object.
drop()- rtype:
Optional[TypeVar(NDFrameT, bound= NDFrame)]
add_prefix(prefix)Prefix labels with string prefix.
add_suffix(suffix)Suffix labels with string suffix.
sort_values()Sort by the values along either axis.
sort_index()- rtype:
Optional[TypeVar(NDFrameT, bound= NDFrame)]
reindex(*args, **kwargs)Conform Series/DataFrame to new index with optional filling logic.
filter([items, like, regex, axis])Subset the dataframe rows or columns according to the specified index labels.
head([n])Return the first n rows.
tail([n])Return the last n rows.
sample([n, frac, replace, weights, ...])Return a random sample of items from an axis of object.
pipe(func, *args, **kwargs)Apply chainable functions that expect Series or DataFrames.
__finalize__(other[, method])Propagate metadata from other to self.
__getattr__(name)After regular attribute access, try looking up the name This allows simpler access to columns for interactive use.
__setattr__(name, value)After regular attribute access, try setting the name This allows simpler access to columns for interactive use.
astype(dtype[, copy, errors])Cast a pandas object to a specified dtype
dtype.copy([deep])Make a copy of this object's indices and data.
__copy__([deep])- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__deepcopy__([memo])Parameters memo, default None Standard signature. Unused
infer_objects()Attempt to infer better dtypes for object columns.
convert_dtypes([infer_objects, ...])Convert columns to best possible dtypes using dtypes supporting
pd.NA.fillna()Fill NA/NaN values using the specified method.
ffill()Synonym for
DataFrame.fillna()withmethod='ffill'.pad([axis, inplace, limit, downcast])Synonym for
DataFrame.fillna()withmethod='ffill'.bfill()Synonym for
DataFrame.fillna()withmethod='bfill'.backfill([axis, inplace, limit, downcast])Synonym for
DataFrame.fillna()withmethod='bfill'.replace()Replace values given in to_replace with value.
interpolate([method, axis, limit, inplace, ...])Fill NaN values using an interpolation method.
asof(where[, subset])Return the last row(s) without any NaNs before where.
isna()Detect missing values.
isnull()Detect missing values.
notna()Detect existing (non-missing) values.
notnull()Detect existing (non-missing) values.
clip([lower, upper, axis, inplace])Trim values at input threshold(s).
asfreq(freq[, method, how, normalize, ...])Convert time series to specified frequency.
at_time(time[, asof, axis])Select values at particular time of day (e.g., 9:30AM).
between_time(start_time, end_time[, ...])Select values between particular times of the day (e.g., 9:00-9:30 AM).
resample(rule[, axis, closed, label, ...])Resample time-series data.
first(offset)Select initial periods of time series data based on a date offset.
last(offset)Select final periods of time series data based on a date offset.
rank([axis, method, numeric_only, ...])Compute numerical data ranks (1 through n) along axis.
compare(other[, align_axis, keep_shape, ...])Compare to another Series/DataFrame and show the differences.
align(other[, join, axis, level, copy, ...])Align two objects on their axes with the specified join method.
where()Replace values where the condition is False.
mask()Replace values where the condition is True.
shift([periods, freq, axis, fill_value])Shift index by desired number of periods with an optional time freq.
slice_shift([periods, axis])Equivalent to shift without copying data.
tshift([periods, freq, axis])Shift the time index, using the index's frequency if available.
truncate([before, after, axis, copy])Truncate a Series or DataFrame before and after some index value.
tz_convert(tz[, axis, level, copy])Convert tz-aware axis to target time zone.
tz_localize(tz[, axis, level, copy, ...])Localize tz-naive index of a Series or DataFrame to target time zone.
describe([percentiles, include, exclude, ...])Generate descriptive statistics.
pct_change([periods, fill_method, limit, freq])Percentage change between the current and a prior element.
any([axis, bool_only, skipna, level])- rtype:
DataFrame|Series|bool
all([axis, bool_only, skipna, level])- rtype:
Series|bool
cummax([axis, skipna])cummin([axis, skipna])cumsum([axis, skipna])cumprod([axis, skipna])sem([axis, skipna, level, ddof, numeric_only])- rtype:
Series|float
var([axis, skipna, level, ddof, numeric_only])- rtype:
Series|float
std([axis, skipna, level, ddof, numeric_only])- rtype:
Series|float
min([axis, skipna, level, numeric_only])max([axis, skipna, level, numeric_only])mean([axis, skipna, level, numeric_only])- rtype:
Series|float
median([axis, skipna, level, numeric_only])- rtype:
Series|float
skew([axis, skipna, level, numeric_only])- rtype:
Series|float
kurt([axis, skipna, level, numeric_only])- rtype:
Series|float
kurtosis([axis, skipna, level, numeric_only])- rtype:
Series|float
sum([axis, skipna, level, numeric_only, ...])prod([axis, skipna, level, numeric_only, ...])product([axis, skipna, level, numeric_only, ...])mad([axis, skipna, level]){desc}
rolling(window[, min_periods, center, ...])Provide rolling window calculations.
expanding([min_periods, center, axis, method])Provide expanding window calculations.
ewm([com, span, halflife, alpha, ...])Provide exponentially weighted (EW) calculations.
__iadd__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__isub__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__imul__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__itruediv__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__ifloordiv__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__imod__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__ipow__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__iand__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__ior__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
__ixor__(other)- rtype:
TypeVar(NDFrameT, bound= NDFrame)
first_valid_index()Return index for first non-NA value or None, if no non-NA value is found.
last_valid_index()Return index for last non-NA value or None, if no non-NA value is found.
Inherited from
PandasObject__repr__()Return a string representation for a particular object.
__sizeof__()Generates the total memory usage for an object that returns either a value or Series of values
Inherited from
DirNamesMixin__dir__()Provide method name lookup and completion.
Inherited from
OpsMixin__eq__(other)Return self==value.
__ne__(other)Return self!=value.
__lt__(other)Return self<value.
__le__(other)Return self<=value.
__gt__(other)Return self>value.
__ge__(other)Return self>=value.
__and__(other)__rand__(other)__or__(other)Return self|value.
__ror__(other)Return value|self.
__xor__(other)__rxor__(other)__add__(other)__radd__(other)__sub__(other)__rsub__(other)__mul__(other)__rmul__(other)__truediv__(other)__rtruediv__(other)__floordiv__(other)__rfloordiv__(other)__mod__(other)__rmod__(other)__divmod__(other)__rdivmod__(other)__pow__(other)__rpow__(other)Private Data Attributes:
_metadataInherited from
DataFrame_internal_names_set_typ_HANDLED_TYPES_accessors_hidden_attrs_constructorUsed when a manipulation result has the same dimensions as the original.
_is_homogeneous_typeWhether all the columns in a DataFrame have the same type.
_can_fast_transposeCan we transpose this DataFrame without creating any new array objects.
_valuesAnalogue to ._values that may return a 2D ExtensionArray.
_series_agg_summary_and_see_also_doc_agg_examples_doc_AXIS_ORDERS_AXIS_TO_AXIS_NUMBER_AXIS_LEN_info_axis_number_info_axis_name_AXIS_NUMBERSDeprecated since version 1.1.0.
_AXIS_NAMESDeprecated since version 1.1.0.
_mgr_internal_names_metadata_is_copyInherited from
NDFrame_internal_names_internal_names_set_accessors_hidden_attrs_metadata_is_copy_constructorUsed when a manipulation result has the same dimensions as the original.
_data_stat_axis_number_stat_axis_name_AXIS_TO_AXIS_NUMBER_AXIS_NUMBERSDeprecated since version 1.1.0.
_AXIS_NAMESDeprecated since version 1.1.0.
_info_axis- rtype:
Index
_stat_axis- rtype:
Index
_is_viewReturn boolean indicating if self is view of another array
_is_mixed_type- rtype:
bool
_valuesinternal implementation
_mgr_attrs_typ_AXIS_ORDERS_info_axis_number_info_axis_name_AXIS_LENInherited from
PandasObject_constructorClass constructor (for this class it's just __class__.
_cacheInherited from
DirNamesMixin_accessors_hidden_attrsPrivate Methods:
_get_onset_time_in_seconds()_get_onset_beat_nparray()_get_melody_name_pprint()- rtype:
str
_get_pianoroll_pitch_distribution()_get_pianoroll_original()_get_onset_time_vector()_get_surprisal_array()Inherited from
DataFrame_repr_fits_vertical_()Check length against max_rows.
_repr_fits_horizontal_([ignore_width])Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns.
_info_repr()True if the repr should show the info view.
_repr_html_()Return a html representation for a particular DataFrame.
_from_arrays(arrays, columns, index[, ...])Create DataFrame from a list of arrays corresponding to the columns.
_ixs(i[, axis])Parameters i : int axis : int
_get_column_array(i)Get the values of the i'th column (ndarray or ExtensionArray, as stored in the Block)
_iter_column_arrays()Iterate over the arrays of all columns in order.
_getitem_bool_array(key)_getitem_multilevel(key)_get_value(index, col[, takeable])Quickly retrieve single value at passed column and index.
_setitem_slice(key, value)_setitem_array(key, value)_iset_not_inplace(key, value)_setitem_frame(key, value)_set_item_frame_value(key, value)- rtype:
None
_iset_item_mgr(loc, value[, inplace])- rtype:
None
_set_item_mgr(key, value)- rtype:
None
_iset_item(loc, value)- rtype:
None
_set_item(key, value)Add series to DataFrame in specified column.
_set_value(index, col, value[, takeable])Put single value at passed column and index.
_ensure_valid_index(value)Ensure that if we don't have an index, that we can create one from the passed value.
_box_col_values(values, loc)Provide boxed values for a column.
_clear_item_cache()- rtype:
None
_get_item_cache(item)Return the cached item, item represents a label indexer.
_reset_cacher()Reset the cacher.
_maybe_cache_changed(item, value, inplace)The object has called back to us saying maybe it has changed.
_sanitize_column(value)Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array.
_reindex_axes(axes, level, limit, tolerance, ...)Perform the reindex for all the axes.
_reindex_index(new_index, method, copy, level)_reindex_columns(new_columns, method, copy, ...)_reindex_multi(axes, copy, fill_value)We are guaranteed non-Nones in the axes.
_replace_columnwise(mapping, inplace, regex)Dispatch to Series.replace column-wise.
_cmp_method(other, op)_arith_method(other, op)_logical_method(other, op)_dispatch_frame_op(right, func[, axis])Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation.
_combine_frame(other, func[, fill_value])_construct_result(result)Wrap the result of an arithmetic, comparison, or logical operation.
_gotitem(key, ndim[, subset])Sub-classes to define.
_append(other[, ignore_index, ...])- rtype:
DataFrame
_join_compat(other[, on, how, lsuffix, ...])_count_level(level[, axis, numeric_only])_reduce(op, name, *[, axis, skipna, ...])_reduce_axis1(name, func, skipna)Special case for _reduce to try to avoid a potentially-expensive transpose.
_get_agg_axis(axis_num)Let's be explicit about this.
_to_dict_of_blocks([copy])Return a dict of dtype -> Constructor Types that each is a homogeneous dtype.
Inherited from
NDFrame_init_mgr(mgr, axes[, dtype, copy])passed a manager and a axes dict
_as_manager(typ[, copy])Private helper function to create a DataFrame with specific manager.
_validate_dtype(dtype)validate the passed dtype
_construct_axes_dict([axes])Return an axes dictionary for myself.
_construct_axes_from_arguments(args, kwargs)Construct and returns axes if supplied in args/kwargs.
_get_axis_number(axis)- rtype:
int
_get_axis_name(axis)- rtype:
str
_get_axis(axis)- rtype:
Index
_get_block_manager_axis(axis)Map the axis to the block_manager axis.
_get_axis_resolvers(axis)- rtype:
dict[str,Series|MultiIndex]
_get_index_resolvers()- rtype:
dict[Hashable,Series|MultiIndex]
_get_cleaned_column_resolvers()Return the special character free column resolvers of a dataframe.
_set_axis_nocheck(labels, axis, inplace, copy)_set_axis(axis, labels)- rtype:
None
_rename([mapper, index, columns, axis, ...])- rtype:
Optional[TypeVar(NDFrameT, bound= NDFrame)]
_set_axis_name(name[, axis, inplace])Set the name(s) of the axis.
_indexed_same(other)- rtype:
bool
_is_level_reference(key[, axis])Test whether a key is a level reference for a given axis.
_is_label_reference(key[, axis])Test whether a key is a label reference for a given axis.
_is_label_or_level_reference(key[, axis])Test whether a key is a label or level reference for a given axis.
_check_label_or_level_ambiguity(key[, axis])Check whether key is ambiguous.
_get_label_or_level_values(key[, axis])Return a 1-D array of values associated with key, a label or level from the given axis.
_drop_labels_or_levels(keys[, axis])Drop labels and/or levels for the given axis.
_repr_latex_()Returns a LaTeX representation for a particular object.
_repr_data_resource_()Not a real Jupyter special repr method, but we use the same naming convention.
_reset_cacher()Reset the cacher.
_maybe_update_cacher([clear, ...])See if we need to update our parent cacher if clear, then clear our cache.
_clear_item_cache()- rtype:
None
_take(indices[, axis, convert_indices])Internal version of the take allowing specification of additional args.
_take_with_is_copy(indices[, axis])Internal version of the take method that sets the _is_copy attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning).
_slice(slobj[, axis])Construct a slice of this container.
_set_is_copy(ref[, copy])- rtype:
None
_check_is_chained_assignment_possible()Check if we are a view, have a cacher, and are of mixed type.
_check_setitem_copy([t, force])Parameters t : str, the type of setting error force : bool, default False :5: (ERROR/3) Unexpected indentation. If True, then force showing an error.
_check_inplace_and_allows_duplicate_labels(inplace)_drop_axis(labels, axis[, level, errors, ...])Drop labels from specified axis.
_update_inplace(result[, verify_is_copy])Replace self internals with result.
_reindex_axes(axes, level, limit, tolerance, ...)Perform the reindex for all the axes.
_needs_reindex_multi(axes, method, level)Check if we do need a multi reindex.
_reindex_multi(axes, copy, fill_value)_reindex_with_indexers(reindexers[, ...])allow_dups indicates an internal call here
_dir_additions()add the string-like attributes from the info_axis.
_protect_consolidate(f)Consolidate _mgr -- if the blocks have changed, then clear the cache
_consolidate_inplace()Consolidate data in place and return None
_consolidate()Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray).
_check_inplace_setting(value)check whether we allow in-place setting with this type of value
_get_numeric_data()- rtype:
TypeVar(NDFrameT, bound= NDFrame)
_get_bool_data()_convert([datetime, numeric, timedelta])Attempt to infer better dtype for object columns.
_clip_with_scalar(lower, upper[, inplace])_clip_with_one_bound(threshold, method, ...)_align_frame(other[, join, axis, level, ...])_align_series(other[, join, axis, level, ...])_where(cond[, other, inplace, axis, level])Equivalent to public method where, except that other is not applied as a function even if callable.
_agg_by_level(name[, axis, level, skipna])_logical_func(name, func[, axis, bool_only, ...])- rtype:
Series|bool
_accum_func(name, func[, axis, skipna])_stat_function_ddof(name, func[, axis, ...])- rtype:
Series|float
_stat_function(name, func[, axis, skipna, ...])_min_count_stat_function(name, func[, axis, ...])_add_numeric_operations()Add the operations to the cls; evaluate the doc strings again
_inplace_method(other, op)Wrap arithmetic method to operate inplace.
_find_valid_index(*, how)Retrieves the index of the first valid value.
Inherited from
PandasObject_reset_cache([key])Reset cached properties.
Inherited from
DirNamesMixin_dir_deletions()Delete unwanted __dir__ for this object.
_dir_additions()Add additional __dir__ for this object.
Inherited from
OpsMixin_cmp_method(other, op)_logical_method(other, op)_arith_method(other, op)
- access_idyom_output_keywords(output_keywords)[source]
Access certain idyom output(s) via its (their) keyword(s).
- Parameters:
output_keywords (List[str]) – A list of IDyOM output keywords (e.g., [‘cpitch.information.content’, ‘onset’, ‘entropy’])
- Returns:
a dataframe containing all data of the selected IDyOM outputs according to the specified keywords.
- Return type:
pd.DataFrame
- compute_properties_means(idyom_outputs)[source]
Compute the mean values of the idyom outputs.
- Parameters:
idyom_outputs (
List[str]) – list of idyom output keyword to compute the means- Type:
List[str]
- Returns:
the mean values of selected idyom outputs
- Return type:
DataFrame