py2lispIDyOM.extract.MelodyInfo

class py2lispIDyOM.extract.MelodyInfo(exp_pitch_element_list, parent_experiment, *args, **kw)[source]

A melody object (pd.DataFrame) that contains all data in a single melody inherit from the parent Experiment.

Public Data Attributes:

Inherited from DataFrame

axes

Return a list representing the axes of the DataFrame.

shape

Return a tuple representing the dimensionality of the DataFrame.

style

Returns a Styler object.

T

rtype:

DataFrame

index

The index (row labels) of the DataFrame.

columns

The column labels of the DataFrame.

values

Return a Numpy representation of the DataFrame.

Inherited from NDFrame

attrs

Dictionary of global attributes of this dataset.

flags

Get the properties associated with this pandas object.

shape

Return a tuple of axis dimensions

axes

Return index label(s) of the internal NDFrame

ndim

Return an int representing the number of axes / array dimensions.

size

Return an int representing the number of elements in this object.

empty

Indicator whether Series/DataFrame is empty.

values

dtypes

Return the dtypes in the DataFrame.

Inherited from IndexingMixin

iloc

Purely integer-location based indexing for selection by position.

loc

Access a group of rows and columns by label(s) or a boolean array.

at

Access a single value for a row/column label pair.

iat

Access a single value for a row/column pair by integer position.

Public Methods:

__init__(exp_pitch_element_list, ...)

access_idyom_output_keywords(output_keywords)

Access certain idyom output(s) via its (their) keyword(s).

get_idyom_output_nparray(idyom_output_key)

Get the IDyOM output via its key as a np.array

get_idyom_output_keyword_list()

Get a list of available IDyOM output keyword for this melody.

compute_properties_means(idyom_outputs)

Compute the mean values of the idyom outputs.

Inherited from DataFrame

__init__([data, index, columns, dtype, copy])

__dataframe__([nan_as_null, allow_copy])

Return the dataframe interchange object implementing the interchange protocol.

__repr__()

Return a string representation for a particular DataFrame.

to_string()

Render a DataFrame to a console-friendly tabular output.

items()

Iterate over (column name, Series) pairs.

iteritems()

Iterate over (column name, Series) pairs.

iterrows()

Iterate over DataFrame rows as (index, Series) pairs.

itertuples([index, name])

Iterate over DataFrame rows as namedtuples.

__len__()

Returns length of info axis, but here we use the index.

dot()

Compute the matrix multiplication between the DataFrame and other.

__matmul__()

Matrix multiplication using binary @ operator in Python>=3.5.

__rmatmul__(other)

Matrix multiplication using binary @ operator in Python>=3.5.

from_dict(data[, orient, dtype, columns])

Construct DataFrame from dict of array-like or dicts.

to_numpy([dtype, copy, na_value])

Convert the DataFrame to a NumPy array.

to_dict()

Convert the DataFrame to a dictionary.

to_gbq(destination_table[, project_id, ...])

Write a DataFrame to a Google BigQuery table.

from_records(data[, index, exclude, ...])

Convert structured or record ndarray to DataFrame.

to_records([index, column_dtypes, index_dtypes])

Convert DataFrame to a NumPy record array.

to_stata(path[, convert_dates, write_index, ...])

Export DataFrame object to Stata dta format.

to_feather(path, **kwargs)

Write a DataFrame to the binary Feather format.

to_markdown([buf, mode, index, storage_options])

Print DataFrame in Markdown-friendly format.

to_parquet()

Write a DataFrame to the binary parquet format.

to_orc([path, engine, index, engine_kwargs])

Write a DataFrame to the ORC format.

to_html()

Render a DataFrame as an HTML table.

to_xml([path_or_buffer, index, root_name, ...])

Render a DataFrame to an XML document.

info([verbose, buf, max_cols, memory_usage, ...])

Print a concise summary of a DataFrame.

memory_usage([index, deep])

Return the memory usage of each column in bytes.

transpose(*args[, copy])

Transpose index and columns.

__getitem__(key)

isetitem(loc, value)

Set the given value in the column with position 'loc'.

__setitem__(key, value)

query()

Query the columns of a DataFrame with a boolean expression.

eval()

Evaluate a string describing operations on DataFrame columns.

select_dtypes([include, exclude])

Return a subset of the DataFrame's columns based on the column dtypes.

insert(loc, column, value[, allow_duplicates])

Insert column into DataFrame at specified location.

assign(**kwargs)

Assign new columns to a DataFrame.

lookup(row_labels, col_labels)

Label-based "fancy indexing" function for DataFrame.

align(other[, join, axis, level, copy, ...])

Align two objects on their axes with the specified join method.

set_axis()

Assign desired index to given axis.

reindex([labels, index, columns, axis, ...])

Conform Series/DataFrame to new index with optional filling logic.

drop()

Drop specified labels from rows or columns.

rename()

Alter axes labels.

fillna()

Fill NA/NaN values using the specified method.

pop(item)

Return item and drop from frame.

replace()

Replace values given in to_replace with value.

shift([periods, freq, axis, fill_value])

Shift index by desired number of periods with an optional time freq.

set_index()

Set the DataFrame index using existing columns.

reset_index()

Reset the index, or a level of it.

isna()

Detect missing values.

isnull()

DataFrame.isnull is an alias for DataFrame.isna.

notna()

Detect existing (non-missing) values.

notnull()

DataFrame.notnull is an alias for DataFrame.notna.

dropna()

Remove missing values.

drop_duplicates([subset, keep, inplace, ...])

Return DataFrame with duplicate rows removed.

duplicated([subset, keep])

Return boolean Series denoting duplicate rows.

sort_values()

Sort by the values along either axis.

sort_index()

Sort object by labels (along an axis).

value_counts([subset, normalize, sort, ...])

Return a Series containing counts of unique rows in the DataFrame.

nlargest(n, columns[, keep])

Return the first n rows ordered by columns in descending order.

nsmallest(n, columns[, keep])

Return the first n rows ordered by columns in ascending order.

swaplevel([i, j, axis])

Swap levels i and j in a MultiIndex.

reorder_levels(order[, axis])

Rearrange index levels using input order.

__divmod__(other)

rtype:

tuple[DataFrame, DataFrame]

__rdivmod__(other)

rtype:

tuple[DataFrame, DataFrame]

compare(other[, align_axis, keep_shape, ...])

Compare to another DataFrame and show the differences.

combine(other, func[, fill_value, overwrite])

Perform column-wise combine with another DataFrame.

combine_first(other)

Update null elements with value in the same location in other.

update(other[, join, overwrite, ...])

Modify in place using non-NA values from another DataFrame.

groupby([by, axis, level, as_index, sort, ...])

Group DataFrame using a mapper or by a Series of columns.

pivot([index, columns, values])

Return reshaped DataFrame organized by given index / column values.

pivot_table([values, index, columns, ...])

Create a spreadsheet-style pivot table as a DataFrame.

stack([level, dropna])

Stack the prescribed level(s) from columns to index.

explode(column[, ignore_index])

Transform each element of a list-like to a row, replicating index values.

unstack([level, fill_value])

Pivot a level of the (necessarily hierarchical) index labels.

melt([id_vars, value_vars, var_name, ...])

Unpivot a DataFrame from wide to long format, optionally leaving identifiers set.

diff([periods, axis])

First discrete difference of element.

aggregate([func, axis])

Aggregate using one or more operations over the specified axis.

agg([func, axis])

Aggregate using one or more operations over the specified axis.

any(*[, axis, bool_only, skipna, level])

Return whether any element is True, potentially over an axis.

transform(func[, axis])

Call func on self producing a DataFrame with the same axis shape as self.

apply(func[, axis, raw, result_type, args])

Apply a function along an axis of the DataFrame.

applymap(func[, na_action])

Apply a function to a Dataframe elementwise.

append(other[, ignore_index, ...])

Append rows of other to the end of caller, returning a new object.

join(other[, on, how, lsuffix, rsuffix, ...])

Join columns of another DataFrame.

merge(right[, how, on, left_on, right_on, ...])

Merge DataFrame or named Series objects with a database-style join.

round([decimals])

Round a DataFrame to a variable number of decimal places.

corr([method, min_periods, numeric_only])

Compute pairwise correlation of columns, excluding NA/null values.

cov([min_periods, ddof, numeric_only])

Compute pairwise covariance of columns, excluding NA/null values.

corrwith(other[, axis, drop, method, ...])

Compute pairwise correlation.

count([axis, level, numeric_only])

Count non-NA cells for each column or row.

nunique([axis, dropna])

Count number of distinct elements in specified axis.

idxmin([axis, skipna, numeric_only])

Return index of first occurrence of minimum over requested axis.

idxmax([axis, skipna, numeric_only])

Return index of first occurrence of maximum over requested axis.

mode([axis, numeric_only, dropna])

Get the mode(s) of each element along the selected axis.

quantile()

Return values at the given quantile over requested axis.

asfreq(freq[, method, how, normalize, ...])

Convert time series to specified frequency.

resample(rule[, axis, closed, label, ...])

Resample time-series data.

to_timestamp([freq, how, axis, copy])

Cast to DatetimeIndex of timestamps, at beginning of period.

to_period([freq, axis, copy])

Convert DataFrame from DatetimeIndex to PeriodIndex.

isin(values)

Whether each element in the DataFrame is contained in values.

plot

alias of PlotAccessor

hist([column, by, grid, xlabelsize, xrot, ...])

Make a histogram of the DataFrame's columns.

boxplot([column, by, ax, fontsize, rot, ...])

Make a box plot from DataFrame columns.

sparse

alias of SparseFrameAccessor

ffill()

Synonym for DataFrame.fillna() with method='ffill'.

bfill()

Synonym for DataFrame.fillna() with method='bfill'.

clip([lower, upper, axis, inplace])

Trim values at input threshold(s).

interpolate([method, axis, limit, inplace, ...])

Fill NaN values using an interpolation method.

where()

Replace values where the condition is False.

mask()

Replace values where the condition is True.

all([axis, bool_only, skipna, level])

Return whether all elements are True, potentially over an axis.

mad([axis, skipna, level])

Return the mean absolute deviation of the values over the requested axis.

sem([axis, skipna, level, ddof, numeric_only])

Return unbiased standard error of the mean over requested axis.

var([axis, skipna, level, ddof, numeric_only])

Return unbiased variance over requested axis.

std([axis, skipna, level, ddof, numeric_only])

Return sample standard deviation over requested axis.

cummin([axis, skipna])

Return cumulative minimum over a DataFrame or Series axis.

cummax([axis, skipna])

Return cumulative maximum over a DataFrame or Series axis.

cumsum([axis, skipna])

Return cumulative sum over a DataFrame or Series axis.

cumprod([axis, skipna])

Return cumulative product over a DataFrame or Series axis.

sum([axis, skipna, level, numeric_only, ...])

Return the sum of the values over the requested axis.

prod([axis, skipna, level, numeric_only, ...])

Return the product of the values over the requested axis.

product([axis, skipna, level, numeric_only, ...])

Return the product of the values over the requested axis.

mean([axis, skipna, level, numeric_only])

Return the mean of the values over the requested axis.

skew([axis, skipna, level, numeric_only])

Return unbiased skew over requested axis.

kurt([axis, skipna, level, numeric_only])

Return unbiased kurtosis over requested axis.

kurtosis([axis, skipna, level, numeric_only])

Return unbiased kurtosis over requested axis.

median([axis, skipna, level, numeric_only])

Return the median of the values over the requested axis.

max([axis, skipna, level, numeric_only])

Return the maximum of the values over the requested axis.

min([axis, skipna, level, numeric_only])

Return the minimum of the values over the requested axis.

add(other[, axis, level, fill_value])

Get Addition of dataframe and other, element-wise (binary operator add).

radd(other[, axis, level, fill_value])

Get Addition of dataframe and other, element-wise (binary operator radd).

sub(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator sub).

mul(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator mul).

truediv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

floordiv(other[, axis, level, fill_value])

Get Integer division of dataframe and other, element-wise (binary operator floordiv).

mod(other[, axis, level, fill_value])

Get Modulo of dataframe and other, element-wise (binary operator mod).

pow(other[, axis, level, fill_value])

Get Exponential power of dataframe and other, element-wise (binary operator pow).

rmul(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator rmul).

rsub(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator rsub).

rtruediv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator rtruediv).

rfloordiv(other[, axis, level, fill_value])

Get Integer division of dataframe and other, element-wise (binary operator rfloordiv).

rpow(other[, axis, level, fill_value])

Get Exponential power of dataframe and other, element-wise (binary operator rpow).

rmod(other[, axis, level, fill_value])

Get Modulo of dataframe and other, element-wise (binary operator rmod).

div(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

rdiv(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator rtruediv).

eq(other[, axis, level])

Get Equal to of dataframe and other, element-wise (binary operator eq).

ne(other[, axis, level])

Get Not equal to of dataframe and other, element-wise (binary operator ne).

lt(other[, axis, level])

Get Less than of dataframe and other, element-wise (binary operator lt).

gt(other[, axis, level])

Get Greater than of dataframe and other, element-wise (binary operator gt).

le(other[, axis, level])

Get Less than or equal to of dataframe and other, element-wise (binary operator le).

ge(other[, axis, level])

Get Greater than or equal to of dataframe and other, element-wise (binary operator ge).

multiply(other[, axis, level, fill_value])

Get Multiplication of dataframe and other, element-wise (binary operator mul).

subtract(other[, axis, level, fill_value])

Get Subtraction of dataframe and other, element-wise (binary operator sub).

divide(other[, axis, level, fill_value])

Get Floating division of dataframe and other, element-wise (binary operator truediv).

Inherited from NDFrame

__init__(data[, copy, attrs])

set_flags(*[, copy, allows_duplicate_labels])

Return a new object with updated flags.

set_axis()

Assign desired index to given axis.

swapaxes(axis1, axis2[, copy])

Interchange axes and swap values axes appropriately.

droplevel(level[, axis])

Return Series/DataFrame with requested index / column level(s) removed.

pop(item)

rtype:

Union[Series, Any]

squeeze([axis])

Squeeze 1 dimensional axis objects into scalars.

rename_axis()

Set the name of the axis for the index or columns.

equals(other)

Test whether two objects contain the same elements.

__neg__()

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__pos__()

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__invert__()

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__nonzero__()

rtype:

NoReturn

__bool__()

rtype:

NoReturn

bool()

Return the bool of a single element Series or DataFrame.

abs()

Return a Series/DataFrame with absolute numeric value of each element.

__abs__()

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__round__([decimals])

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__iter__()

Iterate over info axis.

keys()

Get the 'info axis' (see Indexing for more).

items()

Iterate over (label, values) on info axis

__len__()

Returns length of info axis

__contains__(key)

True if the key is in the info axis

__array__([dtype])

__array_wrap__(result[, context])

Gets called after a ufunc and other functions.

__array_ufunc__(ufunc, method, *inputs, **kwargs)

__getstate__()

rtype:

dict[str, Any]

__setstate__(state)

rtype:

None

__repr__()

Return a string representation for a particular object.

to_excel(excel_writer[, sheet_name, na_rep, ...])

Write object to an Excel sheet.

to_json([path_or_buf, orient, date_format, ...])

Convert the object to a JSON string.

to_hdf(path_or_buf, key[, mode, complevel, ...])

Write the contained data to an HDF5 file using HDFStore.

to_sql(name, con[, schema, if_exists, ...])

Write records stored in a DataFrame to a SQL database.

to_pickle(path[, compression, protocol, ...])

Pickle (serialize) object to file.

to_clipboard([excel, sep])

Copy object to the system clipboard.

to_xarray()

Return an xarray object from the pandas object.

to_latex()

Render object to a LaTeX tabular, longtable, or nested table.

to_csv()

Write object to a comma-separated values (csv) file.

take(indices[, axis, is_copy])

Return the elements in the given positional indices along an axis.

xs(key[, axis, level, drop_level])

Return cross-section from the Series/DataFrame.

__getitem__(item)

__delitem__(key)

Delete item

get(key[, default])

Get item from object for given key (ex: DataFrame column).

reindex_like(other[, method, copy, limit, ...])

Return an object with matching indices as other object.

drop()

rtype:

Optional[TypeVar(NDFrameT, bound= NDFrame)]

add_prefix(prefix)

Prefix labels with string prefix.

add_suffix(suffix)

Suffix labels with string suffix.

sort_values()

Sort by the values along either axis.

sort_index()

rtype:

Optional[TypeVar(NDFrameT, bound= NDFrame)]

reindex(*args, **kwargs)

Conform Series/DataFrame to new index with optional filling logic.

filter([items, like, regex, axis])

Subset the dataframe rows or columns according to the specified index labels.

head([n])

Return the first n rows.

tail([n])

Return the last n rows.

sample([n, frac, replace, weights, ...])

Return a random sample of items from an axis of object.

pipe(func, *args, **kwargs)

Apply chainable functions that expect Series or DataFrames.

__finalize__(other[, method])

Propagate metadata from other to self.

__getattr__(name)

After regular attribute access, try looking up the name This allows simpler access to columns for interactive use.

__setattr__(name, value)

After regular attribute access, try setting the name This allows simpler access to columns for interactive use.

astype(dtype[, copy, errors])

Cast a pandas object to a specified dtype dtype.

copy([deep])

Make a copy of this object's indices and data.

__copy__([deep])

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__deepcopy__([memo])

Parameters memo, default None Standard signature. Unused

infer_objects()

Attempt to infer better dtypes for object columns.

convert_dtypes([infer_objects, ...])

Convert columns to best possible dtypes using dtypes supporting pd.NA.

fillna()

Fill NA/NaN values using the specified method.

ffill()

Synonym for DataFrame.fillna() with method='ffill'.

pad([axis, inplace, limit, downcast])

Synonym for DataFrame.fillna() with method='ffill'.

bfill()

Synonym for DataFrame.fillna() with method='bfill'.

backfill([axis, inplace, limit, downcast])

Synonym for DataFrame.fillna() with method='bfill'.

replace()

Replace values given in to_replace with value.

interpolate([method, axis, limit, inplace, ...])

Fill NaN values using an interpolation method.

asof(where[, subset])

Return the last row(s) without any NaNs before where.

isna()

Detect missing values.

isnull()

Detect missing values.

notna()

Detect existing (non-missing) values.

notnull()

Detect existing (non-missing) values.

clip([lower, upper, axis, inplace])

Trim values at input threshold(s).

asfreq(freq[, method, how, normalize, ...])

Convert time series to specified frequency.

at_time(time[, asof, axis])

Select values at particular time of day (e.g., 9:30AM).

between_time(start_time, end_time[, ...])

Select values between particular times of the day (e.g., 9:00-9:30 AM).

resample(rule[, axis, closed, label, ...])

Resample time-series data.

first(offset)

Select initial periods of time series data based on a date offset.

last(offset)

Select final periods of time series data based on a date offset.

rank([axis, method, numeric_only, ...])

Compute numerical data ranks (1 through n) along axis.

compare(other[, align_axis, keep_shape, ...])

Compare to another Series/DataFrame and show the differences.

align(other[, join, axis, level, copy, ...])

Align two objects on their axes with the specified join method.

where()

Replace values where the condition is False.

mask()

Replace values where the condition is True.

shift([periods, freq, axis, fill_value])

Shift index by desired number of periods with an optional time freq.

slice_shift([periods, axis])

Equivalent to shift without copying data.

tshift([periods, freq, axis])

Shift the time index, using the index's frequency if available.

truncate([before, after, axis, copy])

Truncate a Series or DataFrame before and after some index value.

tz_convert(tz[, axis, level, copy])

Convert tz-aware axis to target time zone.

tz_localize(tz[, axis, level, copy, ...])

Localize tz-naive index of a Series or DataFrame to target time zone.

describe([percentiles, include, exclude, ...])

Generate descriptive statistics.

pct_change([periods, fill_method, limit, freq])

Percentage change between the current and a prior element.

any([axis, bool_only, skipna, level])

rtype:

DataFrame | Series | bool

all([axis, bool_only, skipna, level])

rtype:

Series | bool

cummax([axis, skipna])

cummin([axis, skipna])

cumsum([axis, skipna])

cumprod([axis, skipna])

sem([axis, skipna, level, ddof, numeric_only])

rtype:

Series | float

var([axis, skipna, level, ddof, numeric_only])

rtype:

Series | float

std([axis, skipna, level, ddof, numeric_only])

rtype:

Series | float

min([axis, skipna, level, numeric_only])

max([axis, skipna, level, numeric_only])

mean([axis, skipna, level, numeric_only])

rtype:

Series | float

median([axis, skipna, level, numeric_only])

rtype:

Series | float

skew([axis, skipna, level, numeric_only])

rtype:

Series | float

kurt([axis, skipna, level, numeric_only])

rtype:

Series | float

kurtosis([axis, skipna, level, numeric_only])

rtype:

Series | float

sum([axis, skipna, level, numeric_only, ...])

prod([axis, skipna, level, numeric_only, ...])

product([axis, skipna, level, numeric_only, ...])

mad([axis, skipna, level])

{desc}

rolling(window[, min_periods, center, ...])

Provide rolling window calculations.

expanding([min_periods, center, axis, method])

Provide expanding window calculations.

ewm([com, span, halflife, alpha, ...])

Provide exponentially weighted (EW) calculations.

__iadd__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__isub__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__imul__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__itruediv__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__ifloordiv__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__imod__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__ipow__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__iand__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__ior__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

__ixor__(other)

rtype:

TypeVar(NDFrameT, bound= NDFrame)

first_valid_index()

Return index for first non-NA value or None, if no non-NA value is found.

last_valid_index()

Return index for last non-NA value or None, if no non-NA value is found.

Inherited from PandasObject

__repr__()

Return a string representation for a particular object.

__sizeof__()

Generates the total memory usage for an object that returns either a value or Series of values

Inherited from DirNamesMixin

__dir__()

Provide method name lookup and completion.

Inherited from OpsMixin

__eq__(other)

Return self==value.

__ne__(other)

Return self!=value.

__lt__(other)

Return self<value.

__le__(other)

Return self<=value.

__gt__(other)

Return self>value.

__ge__(other)

Return self>=value.

__and__(other)

__rand__(other)

__or__(other)

Return self|value.

__ror__(other)

Return value|self.

__xor__(other)

__rxor__(other)

__add__(other)

__radd__(other)

__sub__(other)

__rsub__(other)

__mul__(other)

__rmul__(other)

__truediv__(other)

__rtruediv__(other)

__floordiv__(other)

__rfloordiv__(other)

__mod__(other)

__rmod__(other)

__divmod__(other)

__rdivmod__(other)

__pow__(other)

__rpow__(other)

Private Data Attributes:

_metadata

Inherited from DataFrame

_internal_names_set

_typ

_HANDLED_TYPES

_accessors

_hidden_attrs

_constructor

Used when a manipulation result has the same dimensions as the original.

_is_homogeneous_type

Whether all the columns in a DataFrame have the same type.

_can_fast_transpose

Can we transpose this DataFrame without creating any new array objects.

_values

Analogue to ._values that may return a 2D ExtensionArray.

_series

_agg_summary_and_see_also_doc

_agg_examples_doc

_AXIS_ORDERS

_AXIS_TO_AXIS_NUMBER

_AXIS_LEN

_info_axis_number

_info_axis_name

_AXIS_NUMBERS

Deprecated since version 1.1.0.

_AXIS_NAMES

Deprecated since version 1.1.0.

_mgr

_internal_names

_metadata

_is_copy

Inherited from NDFrame

_internal_names

_internal_names_set

_accessors

_hidden_attrs

_metadata

_is_copy

_constructor

Used when a manipulation result has the same dimensions as the original.

_data

_stat_axis_number

_stat_axis_name

_AXIS_TO_AXIS_NUMBER

_AXIS_NUMBERS

Deprecated since version 1.1.0.

_AXIS_NAMES

Deprecated since version 1.1.0.

_info_axis

rtype:

Index

_stat_axis

rtype:

Index

_is_view

Return boolean indicating if self is view of another array

_is_mixed_type

rtype:

bool

_values

internal implementation

_mgr

_attrs

_typ

_AXIS_ORDERS

_info_axis_number

_info_axis_name

_AXIS_LEN

Inherited from PandasObject

_constructor

Class constructor (for this class it's just __class__.

_cache

Inherited from DirNamesMixin

_accessors

_hidden_attrs

Private Methods:

_get_onset_time_in_seconds()

_get_onset_beat_nparray()

_get_melody_name_pprint()

rtype:

str

_get_pianoroll_pitch_distribution()

_get_pianoroll_original()

_get_onset_time_vector()

_get_surprisal_array()

Inherited from DataFrame

_repr_fits_vertical_()

Check length against max_rows.

_repr_fits_horizontal_([ignore_width])

Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns.

_info_repr()

True if the repr should show the info view.

_repr_html_()

Return a html representation for a particular DataFrame.

_from_arrays(arrays, columns, index[, ...])

Create DataFrame from a list of arrays corresponding to the columns.

_ixs(i[, axis])

Parameters i : int axis : int

_get_column_array(i)

Get the values of the i'th column (ndarray or ExtensionArray, as stored in the Block)

_iter_column_arrays()

Iterate over the arrays of all columns in order.

_getitem_bool_array(key)

_getitem_multilevel(key)

_get_value(index, col[, takeable])

Quickly retrieve single value at passed column and index.

_setitem_slice(key, value)

_setitem_array(key, value)

_iset_not_inplace(key, value)

_setitem_frame(key, value)

_set_item_frame_value(key, value)

rtype:

None

_iset_item_mgr(loc, value[, inplace])

rtype:

None

_set_item_mgr(key, value)

rtype:

None

_iset_item(loc, value)

rtype:

None

_set_item(key, value)

Add series to DataFrame in specified column.

_set_value(index, col, value[, takeable])

Put single value at passed column and index.

_ensure_valid_index(value)

Ensure that if we don't have an index, that we can create one from the passed value.

_box_col_values(values, loc)

Provide boxed values for a column.

_clear_item_cache()

rtype:

None

_get_item_cache(item)

Return the cached item, item represents a label indexer.

_reset_cacher()

Reset the cacher.

_maybe_cache_changed(item, value, inplace)

The object has called back to us saying maybe it has changed.

_sanitize_column(value)

Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array.

_reindex_axes(axes, level, limit, tolerance, ...)

Perform the reindex for all the axes.

_reindex_index(new_index, method, copy, level)

_reindex_columns(new_columns, method, copy, ...)

_reindex_multi(axes, copy, fill_value)

We are guaranteed non-Nones in the axes.

_replace_columnwise(mapping, inplace, regex)

Dispatch to Series.replace column-wise.

_cmp_method(other, op)

_arith_method(other, op)

_logical_method(other, op)

_dispatch_frame_op(right, func[, axis])

Evaluate the frame operation func(left, right) by evaluating column-by-column, dispatching to the Series implementation.

_combine_frame(other, func[, fill_value])

_construct_result(result)

Wrap the result of an arithmetic, comparison, or logical operation.

_gotitem(key, ndim[, subset])

Sub-classes to define.

_append(other[, ignore_index, ...])

rtype:

DataFrame

_join_compat(other[, on, how, lsuffix, ...])

_count_level(level[, axis, numeric_only])

_reduce(op, name, *[, axis, skipna, ...])

_reduce_axis1(name, func, skipna)

Special case for _reduce to try to avoid a potentially-expensive transpose.

_get_agg_axis(axis_num)

Let's be explicit about this.

_to_dict_of_blocks([copy])

Return a dict of dtype -> Constructor Types that each is a homogeneous dtype.

Inherited from NDFrame

_init_mgr(mgr, axes[, dtype, copy])

passed a manager and a axes dict

_as_manager(typ[, copy])

Private helper function to create a DataFrame with specific manager.

_validate_dtype(dtype)

validate the passed dtype

_construct_axes_dict([axes])

Return an axes dictionary for myself.

_construct_axes_from_arguments(args, kwargs)

Construct and returns axes if supplied in args/kwargs.

_get_axis_number(axis)

rtype:

int

_get_axis_name(axis)

rtype:

str

_get_axis(axis)

rtype:

Index

_get_block_manager_axis(axis)

Map the axis to the block_manager axis.

_get_axis_resolvers(axis)

rtype:

dict[str, Series | MultiIndex]

_get_index_resolvers()

rtype:

dict[Hashable, Series | MultiIndex]

_get_cleaned_column_resolvers()

Return the special character free column resolvers of a dataframe.

_set_axis_nocheck(labels, axis, inplace, copy)

_set_axis(axis, labels)

rtype:

None

_rename([mapper, index, columns, axis, ...])

rtype:

Optional[TypeVar(NDFrameT, bound= NDFrame)]

_set_axis_name(name[, axis, inplace])

Set the name(s) of the axis.

_indexed_same(other)

rtype:

bool

_is_level_reference(key[, axis])

Test whether a key is a level reference for a given axis.

_is_label_reference(key[, axis])

Test whether a key is a label reference for a given axis.

_is_label_or_level_reference(key[, axis])

Test whether a key is a label or level reference for a given axis.

_check_label_or_level_ambiguity(key[, axis])

Check whether key is ambiguous.

_get_label_or_level_values(key[, axis])

Return a 1-D array of values associated with key, a label or level from the given axis.

_drop_labels_or_levels(keys[, axis])

Drop labels and/or levels for the given axis.

_repr_latex_()

Returns a LaTeX representation for a particular object.

_repr_data_resource_()

Not a real Jupyter special repr method, but we use the same naming convention.

_reset_cacher()

Reset the cacher.

_maybe_update_cacher([clear, ...])

See if we need to update our parent cacher if clear, then clear our cache.

_clear_item_cache()

rtype:

None

_take(indices[, axis, convert_indices])

Internal version of the take allowing specification of additional args.

_take_with_is_copy(indices[, axis])

Internal version of the take method that sets the _is_copy attribute to keep track of the parent dataframe (using in indexing for the SettingWithCopyWarning).

_slice(slobj[, axis])

Construct a slice of this container.

_set_is_copy(ref[, copy])

rtype:

None

_check_is_chained_assignment_possible()

Check if we are a view, have a cacher, and are of mixed type.

_check_setitem_copy([t, force])

Parameters t : str, the type of setting error force : bool, default False :5: (ERROR/3) Unexpected indentation. If True, then force showing an error.

_check_inplace_and_allows_duplicate_labels(inplace)

_drop_axis(labels, axis[, level, errors, ...])

Drop labels from specified axis.

_update_inplace(result[, verify_is_copy])

Replace self internals with result.

_reindex_axes(axes, level, limit, tolerance, ...)

Perform the reindex for all the axes.

_needs_reindex_multi(axes, method, level)

Check if we do need a multi reindex.

_reindex_multi(axes, copy, fill_value)

_reindex_with_indexers(reindexers[, ...])

allow_dups indicates an internal call here

_dir_additions()

add the string-like attributes from the info_axis.

_protect_consolidate(f)

Consolidate _mgr -- if the blocks have changed, then clear the cache

_consolidate_inplace()

Consolidate data in place and return None

_consolidate()

Compute NDFrame with "consolidated" internals (data of each dtype grouped together in a single ndarray).

_check_inplace_setting(value)

check whether we allow in-place setting with this type of value

_get_numeric_data()

rtype:

TypeVar(NDFrameT, bound= NDFrame)

_get_bool_data()

_convert([datetime, numeric, timedelta])

Attempt to infer better dtype for object columns.

_clip_with_scalar(lower, upper[, inplace])

_clip_with_one_bound(threshold, method, ...)

_align_frame(other[, join, axis, level, ...])

_align_series(other[, join, axis, level, ...])

_where(cond[, other, inplace, axis, level])

Equivalent to public method where, except that other is not applied as a function even if callable.

_agg_by_level(name[, axis, level, skipna])

_logical_func(name, func[, axis, bool_only, ...])

rtype:

Series | bool

_accum_func(name, func[, axis, skipna])

_stat_function_ddof(name, func[, axis, ...])

rtype:

Series | float

_stat_function(name, func[, axis, skipna, ...])

_min_count_stat_function(name, func[, axis, ...])

_add_numeric_operations()

Add the operations to the cls; evaluate the doc strings again

_inplace_method(other, op)

Wrap arithmetic method to operate inplace.

_find_valid_index(*, how)

Retrieves the index of the first valid value.

Inherited from PandasObject

_reset_cache([key])

Reset cached properties.

Inherited from DirNamesMixin

_dir_deletions()

Delete unwanted __dir__ for this object.

_dir_additions()

Add additional __dir__ for this object.

Inherited from OpsMixin

_cmp_method(other, op)

_logical_method(other, op)

_arith_method(other, op)


access_idyom_output_keywords(output_keywords)[source]

Access certain idyom output(s) via its (their) keyword(s).

Parameters:

output_keywords (List[str]) – A list of IDyOM output keywords (e.g., [‘cpitch.information.content’, ‘onset’, ‘entropy’])

Returns:

a dataframe containing all data of the selected IDyOM outputs according to the specified keywords.

Return type:

pd.DataFrame

compute_properties_means(idyom_outputs)[source]

Compute the mean values of the idyom outputs.

Parameters:

idyom_outputs (List[str]) – list of idyom output keyword to compute the means

Type:

List[str]

Returns:

the mean values of selected idyom outputs

Return type:

DataFrame

get_idyom_output_keyword_list()[source]

Get a list of available IDyOM output keyword for this melody.

Returns:

a list of available IDyOM output keyword

Return type:

list(str)

get_idyom_output_nparray(idyom_output_key)[source]

Get the IDyOM output via its key as a np.array

Parameters:

idyom_output_key (str) – list of str

Returns:

an array of the specified output values

Return type:

np.array