run
This module implements a class to configure and run the IDyOM model.
For more concrete examples on how to configure and run the IDyOM model, please see the tutorial.
To run the IDyOM model with py2lispIDyOM
, the IDyOMExperiment
object is
provided to configure the model. You will set all the dataset paths, model parameters here.
- class py2lispIDyOM.run.IDyOMExperiment(test_dataset_path, pretrain_dataset_path=None, experiment_history_folder_path=None, experiment_logger_name=None, idyom_config=<factory>)[source]
A class to configure and run an IDyOM experiment
- Parameters:
test_dataset_path (str) – the path to your test dataset (required)
pretrain_dataset_path (str) – the path to your pretrain dataset
experiment_history_folder_path (str) – the path to which you want to save all the result data/plots, defaults to None.
experiment_logger_name (str) – the name of the experiment logger for the current experiment, defaults to the current timestamp.
Important notes
Parameters to configure the IDyOM model are almost the same as the those listed and described in the IDyOM parameters documentation, EXCEPT that users are not allowed to assign dataset-id and pretraining-ids, and output-path in py2lispIDyOM.
Instead, users need to supply the relevant dataset paths for the test dataset and pretrain dataset, and unique dataset ID will automatically then be assigned to those user-specified dataset respectively. The output file of the IDyOM model are saved to the corresponding experiment logger.
Valid parameters to configure the IDyOM model
- Required parameters:
target_viewpoints: List[SingleViewpoint]
source_viewpoints: Union[Literal[‘:select’], List[Union[SingleViewpoint, Tuple[SingleViewpoint]]]]
- Statistical modelling parameters:
models: Literal[‘:stm’, ‘:ltm’, ‘:ltm+’, ‘:both’, ‘:both+’]
ltmo: Literal[‘:ltmo’]
stmo: Literal[‘:stmo’]
ltmo_order_bound``stmo_order_bound: int
ltmo_mixtures, stmo_mixtures: bool
ltmo_update_exclusion, stmo_update_exclusion: bool
ltmo_escape, stmo_escape: Literal[‘:a’, ‘:b’, ‘:c’, ‘:d’, ‘:x’]
- Training parameters:
k: Union[int, Literal[“:full”]], default is 10
resampling_indices: List[int]
- Viewpoint selection parameters:
basis: Union[List[SingleViewpoint], Literal[‘:pitch-full’, ‘:pitch-short’, ‘:bioi’, ‘:onset’, ‘:auto’]]
dp: int
max_links: int
min_links: int
viewpoint_selection_output: str
- Output parameters:
detail: Literal[1, 2, 3]
overwrite: bool
separator: str
- Caching parameters:
use_resampling_set_cache: bool
use_ltms_cache: bool